skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cnaani, Avner"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Betran, Esther (Ed.)
    Abstract Cichlid fishes have undergone an extraordinary diversification in East Africa. They also have a high rate of sex chromosome turnover. This clade provides an opportunity to study the rates and patterns of sex chromosome turnover, and the interactions of sex chromosome turnover with adaptation and speciation. Here we investigate the evolution sex chromosomes in the tribes Tilapiini, Coptodonini, Heterotilapiini, Gobiocichlini, Pelmatolapiini and Oreochromini. We assembled chromosome-scale genomes of male and female Pelmatotilapia mariae. We then mapped pooled sequencing reads for males and females of P. mariae and 12 additional species on several genome assemblies to identify sex chromosomes. Tilapia sparrmanii and Oreochromis aureus share a ZW system on LG3 that overlaps the ZW system identified in P. mariae. Heterotilapia buettikoferi, T. brevimanus and Coptodon bakossiorum share an XY system mapping to another region of LG3. Coptodon zilli, Sarotherodon galilaeus, S. melanotheron and O. niloticus share an XY system on LG1. Finally, O. mossambicus and O. shiranus share an XY system on LG14 and we find evidence of an XY system on LG20 in Danakilia sp. ‘shukoray’. The phylogenetic distribution of these sex determination systems suggests a long period of polymorphism for the systems on LG1 and LG3 and a generally lower rate of sex chromosome turnover in these lineages compared to the lacustrine lineages of the East African radiation. Our data is not consistent with the recent suggestion of figla and banf2 as candidate genes for the LG1XY and LG3ZW systems. We suggest a possible role for ubiquitination in the XY systems on LG3. 
    more » « less
    Free, publicly-accessible full text available October 9, 2026
  2. Euryhaline fish experience variable osmotic environments requiring physiological adjustments to tolerate elevated salinity. Mozambique tilapia ( Oreochromis mossambicus) possess one of the highest salinity tolerance limits of any fish. In tilapia and other euryhaline fish species the myo-inositol biosynthesis (MIB) pathway enzymes, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1.1), are among the most upregulated mRNAs and proteins indicating the high importance of this pathway for hyper-osmotic (HO) stress tolerance. These abundance changes must be precluded by HO perception and signaling mechanism activation to regulate the expression of MIPS and IMPA1.1 genes. In previous work using a O. mossambicus cell line (OmB), a reoccurring osmosensitive enhancer element (OSRE1) in both MIPS and IMPA1.1 was shown to transcriptionally upregulate these enzymes in response to HO stress. The OSRE1 core consensus (5'-GGAAA-3') matches the core binding sequence of the predominant mammalian HO response transcription factor, nuclear factor of activated T-cells (NFAT5). HO challenged OmB cells showed an increase in NFAT5 mRNA suggesting NFAT5 may contribute to MIB pathway regulation in euryhaline fish. Ectopic expression of wild-type NFAT5 induced an IMPA1.1 promoter-driven reporter by 5.1-fold (p < 0.01). Moreover, expression of dominant negative NFAT5 in HO media resulted in a 47% suppression of the reporter signal (p<0.005). Furthermore, reductions of IMPA1.1 (37-49%) and MIPS (6-37%) mRNA abundance were observed in HO challenged NFAT5 knockout cells relative to control cells. Collectively, these multiple lines of experimental evidence establish NFAT5 as a tilapia transcription factor contributing to HO induced activation of the MIB pathway. 
    more » « less
  3. Abstract MYC transcription factors have critical roles in facilitating a variety of cellular functions that have been highly conserved among species during evolution. However, despite circumstantial evidence for an involvement of MYC in animal osmoregulation, mechanistic links between MYC function and osmoregulation are missing. Mozambique tilapia (Oreochromis mossambicus) represents an excellent model system to study these links because it is highly euryhaline and highly tolerant to osmotic (salinity) stress at both the whole organism and cellular levels of biological organization. Here, we utilize anO. mossambicusbrain cell line and an optimized vector-based CRISPR/Cas9 system to functionally disrupt MYC in the tilapia genome and to establish causal links between MYC and cell functions, including cellular osmoregulation. A cell isolation and dilution strategy yielded polyclonalmyca(a gene encoding MYC) knockout (ko) cell pools with low genetic variability and high gene editing efficiencies (as high as 98.2%). Subsequent isolation and dilution of cells from these pools produced amycako cell line harboring a 1-bp deletion that caused a frameshift mutation. This frameshift functionally inactivated the transcriptional regulatory and DNA-binding domains predicted by bioinformatics and structural analyses. Both the polyclonal and monoclonalmycako cell lines were viable, propagated well in standard medium, and differed from wild-type cells in morphology. As such, they represent a new tool for causally linkingmycato cellular osmoregulation and other cell functions. 
    more » « less
  4. Abstract Species living in changing environments require the acclimatization of individual organisms, which may be significantly influenced by allele specific expression (ASE). Data from RNA-seq experiments can be used to identify and quantify the expressed alleles. However, conventional allele matching to the reference genome creates a mapping bias towards the reference allele that prevents a reliable estimation of the allele counts. We developed a pipeline that allows identification and unbiased quantification of the alleles corresponding to an RNA-seq dataset, without any previous knowledge of the haplotype. To achieve the unbiased mapping, we generate two pseudogenomes by substituting the alternative alleles on the reference genome. The SNPs are further called against each pseudogenome, providing two SNP data-sets that are averaged for calculation of the allele depth to be merged in a final SNP calling file. The pipeline presented here can calculate ASE in non-model organisms and can be applied to previous RNA-seq data-sets for expanding studies in gene expression regulation. 
    more » « less